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The time evolution and stability of the shock solutions of the Korteweg-de Vries-Burgers 
equation are studied numerically. It is found that nonanalytic initial data satisfying the 
boundary conditions of the problem evolve asymptotically into the steady-state shocks 
predicted by a time-independent analysis. Like Burgers’ equation, the Korteweg-de Vries- 
Burgers equation has a unique shock profile; this analogy suggests that the Korteweg- 
de Vries-Burgers shocks are stable against small perturbations, while the numerical ex- 
periments suggest further that the shocks are stable even when subject to large perturbations. 

1. INTRODUCTION 

We present a study of the Korteweg-de Vries-Burgers (KdVB) equation in the form 

4 + 2%! - ww + p&m! = 0, v > 0, p > 0. (1) 

This is a nonlinear partial differential equation incorporating damping and dispersion 
which was derived by Su and Gardner [l ] for a wide class of nonlinear systems in the 
weak nonlinearity and long-wavelength approximations. The steady-state solutions 
of (1) were studied by Grad and Hu [2] in the context of weak plasma skocks propagat- 
ing perpendicularly to a magnetic field; in particular, they carried out a phase-plane 
analysis which showed that when diffusion dominates dispersion the steady-state 
solutions of (1) are monotonic shocks, and when dispersion dominates the shocks are 
oscillatory. Johnson [3] discussed (1) in a study of wave propagation through liquid- 
filled elastic tubes; subsequently he found that (1) was also useful for the description 
of shallow water waves on a viscous fluid [4]. More recently, Hu [5] has obtained (1) 
when including electron inertia effects in the description of weak nonlinear plasma 
waves. The previous work dealt with the steady-state solutions of (1). The aim of this 
work is to gain a more complete knowledge of the KdVB equation by studying the 
time evolution of its solutions, and the stability of the steady states. 

In Section 2, we discuss the steady-state solutions of (1). When diffusion dominates 
dispersion, the steady-state solution is a monotonic shock whose profile is given with 
very high accuracy by a second-order asymptotic solution. When dispersion dominates, 
the steady-state solution is a shock which is oscillatory upstream and monotonic 
downstream. The time-dependent numerical solutions given in Section 3 show the 
evolution of nonanalytic initial data to the steady-state solutions predicted by the 
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time-independent analysis. The numerical experiments suggest that the KdVB shocks 
are stable against large perturbations in their waveforms. 

2. STEADY-STATE SOLUTIONS 

In this section, we review the properties of the steady-state solutions of the KdVB 
equation. In particular, we give a highly accurate second-order asymptotic solution 
for the monotonic shock profile. We emphasize that for fixed dispersion and diffusion 
coefficients p and v, and fixed upstream (X - -co) and downstream (X + + co) 
values of the distribution, the steady-state solutions of (1) have a unique profile. In 
this respect, the KdVB equation is similar to Burgers’ equation [6, 71 where the shock 
profile is also unique, and different from the Kortewegde Vries (KdV] equation [S] 
and Fisher’s equation [9], where for fixed upstream and downstream values of the 
distribution there is a one-parameter family of steady-state profiles. This analogy 
with Burgers’ equation suggests that the KdVB shocks are stable against waveform 
perturbations [lo], and this is supported by the results of the numerical experiments in 
Section 3. 

In this paper we are interested in the solutions of Eq. (l), such that all their x 
derivatives tend to zero as x + &co, and that satisfy the upstream and downstream 
boundary conditions 

lim 24(x, t) = U-, = 1, t 2 0, x-1-m (24 

lim 24(x, t) = u+, = 0, x*+m t > 0, (2b) 

where for convenience and without loss of generality the upstream value U-, has been 
chosen as unity, and the downstream value as zero. The equation for the steady-state 
solutions is obtained by assuming traveling wave solutions of Eq. (1) of the form 

u(x, t) = 24(x - ct - x0) = u(s), (3) 

where c is the wave propagation speed and x0 is an arbitrary constant. Substitution of 
Eq. (3) into Eq. (1) gives a nonlinear ordinary differential equation for the steady- 
state solutions, 

-c(du/ds) + ;?u(du/ds) - v(d2u/d.s2) + p(d3u/ds3) = 0. (4) 

One integration with respect to s gives 

-cu + u2 - v(du/ci!s) + p(d2u/ds2) = A. (5) 

The downstream condition Eq. (2b) together with the fact that all s derivatives are 
zero for s + * co determine the integration constant 

A = -cu+, + utm = 0. (6) 



KORTEWEG-DE VRIES-BURGERS EQUATION 395 

The upstream condition Eq. (2a) and the fact that all s derivatives vanish as s -+ &co 
give 

u-,(24-, - c) = 0 (7) 

or 
c = up, = 1. (8) 

Equations (5) through (8) show that there is a unique value of c and a corresponding 
solution of Eq. (5) that satisfy all the conditions of our problem. This solution gives 
the profile of a shock wave that propagates with a velocity equal to the upstream 
value of u (see Eq. (8)). Because x0 in Eq. (3) is an arbitrary constant, any arbitrary 
space translation of the shock wave results also in a solution of (1); in other words, the 
steady-state solutions of (1) are invariant to space translation. This result is similar 
to that obtained for Burgers’ equation, where the upstream and downstream values 
also determine a unique shock-wave profile and its propagation speed. The result (8) 
is in contrast with those obtained for the KdV equation and Fisher’s equation. 
In KdV’s equation [8] for u -+ 0 as x - &co, there is a one-parameter 
family of steady-state profiles (solitons) with propagation speeds c > 0; in the 
case of Fisher’s equation [9], for u -+lasx-+-coandu-+Oasx++co,thereis 
also a one-parameter family of steady-state profiles with propagation speeds c > 2. 

The steady-state equation (5), where A = 0 (see (6)), with the proper boundary 
conditions consistent with (2a) and (2b) is 

p(d2u/ds2) - v(du/ds) - u + u2 = 0, 

24(-m) = 1, u(+co) = 0. 
(9) 

Grad and Hu [2] showed that the dissipative effects dominate over the dispersive 
effects when 

v2 > 4/L. (10) 

In this case the solution of (9) is a shock decreasing monotonically from the upstream 
to the downstream value of U. If 

v2 < 4p, (11) 

the dispersive effects dominate over the dissipative effects; in this case, the shock 
becomes oscillatory upstream and monotonic downstream. 

When (10) holds, it is convenient to introduce the new independent and dependent 
variables 

2 = -s/v, y=l-24, (12) 

so that (9) becomes 

l (d2y/dz2) + dy/dz + y - y2 = 0, 

Y(---co) = 1, v(+a) = 0, E = /.&Iv2 < a, 
(13) 
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which is identical to Eq. (20) of [9] giving the traveling wave solutions of Fisher’s 
equation. The asymptotic solution of (13), given by Eq. (25) of [9], is now transformed 
taking into account the change of variables (12). In this way, we obtain the asymptotic 
solution of (9), valid when the condition (10) holds: 

1 
u(s; 6) = --__ 

1 + exp(sM + +gg)jT 

i 
4 expW> 

’ ’ - In [l + exp(s/v)]” + 0(‘2)y 1 (14) 

Equation (14) gives all the monotonic shock profiles of the KdVB equation with 
excellent accuracy, even for the case when the expansion parameter E 2 p/v2 has its 
maximum value & [9]. 

Johnson’s main interest and achievement [3] was to obtain an asymptotic solution 
for the oscillatory.shock defined by (9) in the strong dispersion limit (see (11)) v2 Q 4~, 
which is the opposite from the one we obtained, valid for v2 > 4~. He also dealt very 
briefly with the problem of obtaining a second-order asymptotic solution for the 
monotonic shock profile (v2 2 4~). However, his second-order result is incorrect in 
two respects. A trivial one is that the integration giving his second-order term is 
incorrect; somewhat more important, he did not determine the integration constant 
by using the proper conditions [9]. As a consequence, even when corrected for the 
mistake in the integration, his result (which is obtained from (14) substituting the one 
before the logarithmic term in the last parentheses by a zero) is not better than the 
first-order result in the vicinity of the point of inflection of the shock. In [9], we showed 
that the proper determination of the integration constant necessary to obtain (14) 
required the knowledge of the height and slope of the point of inflection of the shock 
profile in the physical plane. These are (see [9, Eq. (15)] after taking into account 
the change of variables (12) and the definition of E in (13)) 

(u, du/ds) = [+ + E/4, - (1 - G/4)/4v]. (15) 

The steepness of the shock given by 1 du/ds / in (15) is to second-order accuracy in E 

s = iv + O(G). (16) 

This result shows that for the monotonic shocks, the steepness, which might be 
considered a measure of the shock strength, is inversely proportional to the diffusion 
coefficient, and, to second-order accuracy, independent of the dispersion coefficient. 
As the second-order solution (14) is highly accurate, this means that, as long as (10) 
holds, the shock strength is practically independent of the dispersion coefficient. 
Indeed, diffusion greatly dominates dispersion. 

When condition (11) holds, the shock strength is so large that the shock becomes 
oscillatory upstream [2, 31. In the limit 4~ > v2, Johnson [3] showed that the shock 
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front approaches asymptotically the KdV soliton given by (9) with v = 0 and 
u( f co) = 0, i.e., 

u(s) = 1 sech2 [s/2@)li2]. (17) 

It should be noticed that the soliton (17) propagates with the same velocity c = 1 
(see (8)) as the KdVB shock. For v2/4p small but finite, the KdVB shocks to the right 
approach the periodic cnoidal wave solution of the KdV equation [3, IO] during an 
increasingly large distance as v2/4p decreases (see Figs. 2 and 3). These statements are 
made clear by the numerical solutions of the KdVB equation shown in Section 3. 

3. NUMERICAL EXPERIMENTS 

The numerical solution of (1) subject to the boundary conditions (2a) and (2b) 
was carried out with the accurate space derivative method (ASD) [I 1, 121. In this 
method, u(x, z + dt) is computed from U(X, t) by a Taylor series 

u(r + dl) w u(t) + at 
82u(t) Lb2 

au(f)&+ at 
a3u(l) At3 

22+F6. (18) 

The time derivatives in (18) are computed by successive differentiation using (1): 

l3l &4 it% %3U 

at’ 
-2u-pg+“j3-Pp 

&l 
-= 
Zt2 (20) 

&l 

p= 
-2$$4$($)-2u&($)+v&($) 

(21) 

The x-derivative terms in (19)-(21) are computed by Fourier methods. Let U(k, t) be 
the finite Fourier transform of U(X, t) defined over the computational domain [13]. 
The Ith-order derivative of u(x, 1) is then given by 

(&4/axL) = C (ik)’ U(k, t) exp(ikx), 
k 

(22) 

where i = (- 1)1/2 and the summation in (22) is carried out for all wavenumbers k 
which can be represented over the computational mesh. This method of computing 
the space derivatives gives results which are substantially more accurate than those 
obtained from finite difference expressions. The procedures used in order to satisfy 
numerically the boundary conditions (2a) and (2b) as well as the stability analysis of 
the numerical method are discussed in [l 11. 
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FIG. 1. Evolution of nonanalytic initial data, a step function with a large superimposed local 
perturbation, into a monotonic shock. The time separation between any two successive plots is 20 
time units; the numbers on the curves are values of time. The upstream value is one, giving a shock 
speed of unity, as can be seen by inspection. The dispersion and diffusion coefficients are p = 1 and 
Y = 6. The quantitative agreement with the asymptotic solution is shown in Table I. 
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FIG. 2. Evolution of nonanalytic initial data, a step function, into an oscillatory shock. The 
upstream value is one, giving a shock speed of unity, as can be seen by inspection. At I = 60 the 
shock is fully developed (see Table II). The dispersion coefficient is p = 1. 
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In Fig. 1, we show the evolution of nonanalytic initial data in the form of a step 
function with a large local perturbation superimposed on it into the monotonic 
KdVB shock. In all the computations shown, the dispersion coefficient and the 
upstream value are unity (see (1) and (2a)), and therefore the shock speed is also unity 
(see (8)). Note that the value of the diffusion coefficient (v = 6) satisfies well the condi- 
tion (10). Figure 1 shows that the KdVB shock is fairly well established after 60 time 
units. As the separation between successive plots is 20 time units, the distance between 
them is also 20 length units, as can be seen by inspection; this shows clearly that the 
shock propagation speed is unity, as predicted. 

The computation in Fig. 1 indicates that initial data satisfying the boundary condi- 
tions evolve asymptotically into a monotonic shock whose profile is determined unique- 
ly by the parameters v and p (see (l)), and by the boundary conditions (2a) and (2b). 
The fact that there are no numerical stability problems whatever, even after 8,000 time 

TABLE I 

Comparison of Asymptotic with Numerical Results for the Monotonic Shock of Diffusion Coefficient 
Y = 6” 

Asymptotic 

s First order Second order Computed at t = 1W 

-30.63 0.994 0.995 0.994 
-26.63 0.988 0.989 0.989 
-22.63 0.977 0.979 0.979 
-18.63 0.957 0.960 0.960 
- 14.63 0.920 0.924 0.924 
- 10.63 0.855 0.860 0.860 

-6.63 0.751 0.757 0.757 
-4.63 0.684 0.690 0.689 
-2.63 0.608 0.613 0.613 
-0.63 0.526 0.532 0.532 

1.37 0.443 0.449 0.449 
3.37 0.363 0.369 0.369 
5.37 0.290 0.296 0.296 
7.37 0.226 0.232 0.232 

11.37 0.131 0.136 0.135 
15.37 0.0716 0.0756 0.0754 
19.37 0.0381 0.0409 0.0408 
23.37 0.0199 0.0217 0.0217 
27.37 0.0103 0.0115 0.0114 
31.37 0.00533 0.00602 0.00599 

o The wave profile amplitude u(s) is given as a function of distance, which in the wave frame is 
measured with respect to the point of inflection of the wave. 

* This profile was obtained after 8,000 time steps of computation, in single precision. 
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steps of computation in single precision, is a strong indication that the shock is 
physically stable also. 

In Table I, we compare the numerical results at t = 160 (which required 8,000 time 
steps of computation in single precision) with the first- and second-order asymptotic 
solutions given by (14). The excellent agreement obtained indicates the high accuracy 
of the ASD method and of the asymptotic solution. It is noted that the first-order 
solution gives two-figure accuracy except at the right tail, while the second-order 
solution gives uniformly three-figure accuracy. 

In Fig. 2 we show the oscillatory shock obtained when the diffusion and dispersion 
coefficients (V = 0.1 and p = 1) are chosen so as to satisfy criterion (11). The initial 
datum used was a step function. Although the step function is different from the initial 
data used in the computation shown in Fig. 1, the fact remains that the step function 
greatly differs from the steady-state profile of the oscillatory shock, and can thus be 
considered a very large perturbation of the steady waveform. A comparison of the 

TABLE II 

Comparison of Time-dependent and Time-independent Numerical Results for the Oscillatory Shock 
of Diffusion Coefficient Y = 0.1’ 

Peak position Peak height 

Time- 
dependent, 

computed at 
t=W 

0 
6.9 

13.5 
19.9 
26.3 
32.6 
39.0 
45.3 
51.6 
57.9 
64.2 
70.6 
76.9 
83.3 
89.7 
96.0 

102.3 

Time- 
independent 

0 
6.9 

13.5 
19.9 
26.3 
32.6 
38.9 
45.2 
51.5 
57.8 
64.0 
70.3 
76.6 
82.9 
89.2 
95.5 

101.8 

Time- 
dependent, 

computed at 
t=w 

1.41 
1.30 
1.22 
1.16 
1.12 
1.09 
1.06 
1.04 
1.03 
1.02 
1.02 
1.01 
1 .Ol 
1.00 
1.00 
1.00 
1 .oo 

Time- 
independent 

1.42 
1.31 
1.23 
1.17 
1.13 
1.09 
1.07 
I .os 
1.04 
1.03 
1.02 
1 .Ol 
1.01 
1 .Ol 
1.00 
1.00 
1.00 

a The peak positions are measured relative to the highest peak. 
* This oscillatory shock profile was obtained after 12,000 time steps of computation, in single 

precision. 
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oscillatory shock evolved after 60 time units with the numerical solution of the time- 
independent boundary value problem (9) [3] indicates that at t = 60 the shock is 
fully developed (see Table II). As before in Fig. 1, inspection of Fig. 2 indicates that 
the distance traveled by the shock front equals the time separation of the successive 
plots, showing that, even before it is fully developed, the shock propagates with the 
theoretically predicted speed of unity. One interesting observation is that initially the 
peak amplitude of the front overshoots the amplitude of the KdV soliton, 1.5 (see 
(17)), and that the amplitude of the successive peaks decays rather fast with distance. 
As the shock develops fully, the peak amplitude of the front becomes, as predicted 
by the phase-plane analysis [2, 31 smaller than the amplitude of the KdV soliton, 1.5 
(see Table II); also, the amplitude of the successive peaks decays more slowly with 
distance. 

The qualitative features revealed in the computation of Fig. 2 are shown more 
sharply in Fig. 3, a computation with v = 0.05 and p = 1. As the diffusion coefficient 
is half that of Fig. 2, the damping decreases greatly and the shock becomes much more 
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FIG. 3. Evolution of nonanalytic initial data, a step function, into a highly oscillatory shock. 
The shock speed is unity as in the previous cases. At t = 50, the shock is almost fully developed 
(see Table III). The dispersion coefficient is 1~ = 1. 
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oscillatory. The first plot of Fig. 3 indicates that initially the peak amplitude of the 
front overshoots considerably the KdV soliton amplitude 1.5. The amplitude of the 
successive peaks decays rather sharply with distance. As the shock develops, the peak 
amplitude of the front becomes smaller, and the amplitude of the successive peaks 
decays also more slowly with distance. The computation shown in Fig. 3 was termi- 
nated at t = 50 for economy reasons. The comparison shown in Table 111 with the 
time-independent numerical results for the shock profile indicates that at t = 50 
the shock is almost, although not quite, fully developed. The peak amplitude of the 
front has already decreased below the upper limit given by the KdV soliton amplitude, 
1.5. A comparison of the last plots of Figs. 2 and 3 shows clearly that as v decreases 
the oscillatory train of the shock damps more slowly with distance. This indicates 
that for very small but finite v, the oscillatory train of the shock would approach 

TABLE III 

Comparison of Time-dependent and Time-independent Numerical Results for the Oscillatory Shock 
of Diffusion Coefficient Y = 0.05” 

Peak position Peak height 

Time- 
dependent, 

computed at 
t = 50* 

0 
7.4 

14.4 
21.2 
27.8 
34.4 
40.9 
47.4 
53.9 
60.4 
66.8 
73.2 
79.5 
85.8 
92.0 
98.1 

104.1 
110.1 
116.0 
121.8 

Time- 
independent 

0 
7.4 

14.3 
21.0 
27.5 
34.0 
40.4 
46.8 
53.2 
59.5 
65.8 
72.1 
78.4 
84.7 
91.0 
97.3 

103.6 
109.9 
116.2 
122.5 

Time- 
dependent, 

computed at 
t = 5Ob 

1.47 
1.41 
1.36 
1.31 
1.27 
1.24 
1.21 
1.18 
1.15 
1.12 
1.10 
1.08 
1.06 
1.04 
1.03 
1.02 
1.02 
1.01 
1 .Ol 
1.00 

Time- 
independent 

1.46 
1.40 
1.34 
I .29 
1.25 
1.22 
1.19 
1.16 
1.14 
1.12 
1.10 
1.09 
1.07 
1.06 
1.05 
1 .os 
1.04 
1.03 
1.03 
1.02 

. 

o The peak positions are measured relative to the highest peak. 
*This oscillatory shock profile was obtained after 10,000 time steps of computation, in single 

precision. 
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along a certain distance the undamped periodic cnoidal wave solution of the KdV 
equation. This is, of course, as predicted by the phase-plane analysis [2, 3, lo]. 

We conclude by pointing out that, in the absence of time-dependent analytic results 
with which to compare the numerical solutions, we are not able to guarantee that the 
numerical experiments shown give the correct transient behavior of the solution. The 
greatest value of these computations is that they indicate that the numerical solutions 
evolve into the steady-state shocks predicted by the time-independent analysis. 
Because the initial data were chosen quite different from the shock profiles, the 
computation time necessary for the development of the shocks is quite large (more 
than 8,000 time steps); therefore, we feel that the absence of any numerical instability 
problems is, in itself, a strong indication of the physical stability of the shocks. 
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